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ABSTRACT
Radio frequency signals have the potential to convey rich
information about a node’s motion and surroundings.
Unfortunately, extracting such information is challenging,
previously requiring accurate phase measurement, large antenna
array structures, or extensive training. In this paper, we present
LeakyTrack, a novel system that enables non-coherent and
training-free motion sensing with a single antenna. The key idea
is to create unique spectrally coded signals at different spatial
directions so that geometric properties of the receiving node, as
well as any potential objects in the environment, leave spectral
footprints on the collected signal. To do so, we exploit a THz
leaky-wave antenna and realize a color-coded scan in which signals
with distinct spectral characteristics simultaneously emit across
the angular domain. LeakyTrack infers nodal and environmental
motion by analyzing the received spectral profile. We evaluate the
performance of LeakyTrack via extensive over-the-air experiments.
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1 INTRODUCTION
Radio frequency (RF) sensing employs the fundamental principle
that changes in the characteristics of electromagnetic (EM) waves
as they travel in the wireless medium can provide rich information
about a receiver’s properties (such as distance, velocity, shape, size,
and orientation) as well as the objects that have interacted with
the waves on their route. It is typically viewed that such properties
(i) cannot be inferred with a single antenna, as a single antenna
provides only one spatial observation point; and (ii) cannot be
inferred solely based on detecting incident power, but rather require
careful timing analysis of the phase of the incoming signal, i.e.,
coherent reception.

In this paper, we for the first time, show that neither of these
common beliefs are true. In particular, we present the design and
experimental evaluation of LeakyTrack, a novel non-coherent and
training-free system that identifies nodal and environmental motion
using a single antenna. Our key idea is to divide the region around
a sensing node into a virtual canvas of segments and to assign
a unique color code to each segment. If these segments were to
be painted based on their color codes, the sensing module can
discover a target’s location based on its color. We propose a similar
concept of "painting by numbers" in which the number represents
a wavenumber (or equivalently frequency). In particular, we create
a unique spectral code in each direction and develop a method to
correlate spatial information with spectral properties, i.e., to map
the canvas to colors. Our key contributions are as follows:

First, we transmit unique spectral codes in the spatial domain by
introducing a novel RF sensing architecture inwhich the transmitter
(TX) and receiver (RX) are equipped with a Leaky-Wave Antenna
(LWA). A LWA is a passive device that allows a travelingwave inside
a waveguide to leak into free-space with the key property that the
emission angle from the waveguide is coupled to the frequency of
the input signal [7]. We exploit this property and develop the first
LWA-based nodal and environmental sensing system.While a naive
LWA implementation would create a spectral code at each direction
by varying the frequency of the input signal (i.e., painting one
segment at a time), we instead show how to simultaneously scan a
wide range of spatial angles (i.e., painting the entire canvas at once)
by injecting a time-domain terahertz (THz) pulse, or equivalently a
broadband signal in frequency domain, into the LWA. Consequently,
different frequency components are decomposed and emerge at
different directions, thus filling the entire angular space with signals
that have unique spectral content or color, which we also refer to
as a color-coded scan.

https://doi.org/10.1145/3384419.3430717
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Second, we demonstrate how LeakyTrack senses nodal and
environmental mobility by analyzing the spectral profile of
the collected signals. In particular, we first devise a model that
allows a LWA-equipped receiving node to locally predict its
angular location and orientation relative to the TX. Since we
deliberately discriminate transmissions of different frequencies
in the spatial domain, the RX only captures certain signals with
unique spectral codes. We show that the location-specific spectral
codes experience a further non-uniform and frequency-dependent
loss at the RX LWA related to the RX’s orientation. LeakyTrack
leverages these insights to jointly extract location and orientation
from the spectral information that was harvested rapidly, via a
single pulse of broadband emission. In addition to tracking device
motion, we characterize the impact of environmental objects on
the color-coded signals. Intuitively, the presence of an object in
the wireless medium can obstruct the reception of certain signals.
Analogous to the shadow of an object in a painted canvas that
affects only certain colors, in a color-coded scan, the object is
unlikely to attenuate all emitted frequencies evenly. Instead, it
imposes a partial and frequency-selective distortion according
to its geometric properties. LeakyTrack identifies such features,
including the object’s angular location and size, by measuring the
object’s spectral footprints.

Finally, we implement the key components of LeakyTrack and
perform extensive over-the-air experiments in various settings. Our
testbed consists of a THz pulse generator, a broadband receiver, and
custom LWAs configured in numerous topologies including with
obstructing objects. Our key findings are as follows:

(i) We experimentally realize a color-coded scan by injecting a
THz pulse into a LWA and measuring the emitted spectral-spatial
profiles in different directions.We demonstrate that LeakyTrack can
successfully sense and track the RX’s parameters, even in complex
real-world trajectories, with average estimation error of < 1◦ for
angular position and < 2◦ for rotation angle.

(ii) We find that such motion inferences are feasible only within
certain regimes. We characterize these detection zones, considering
the physical limitation of our single-antenna architecture and the
inherent spectral behavior of the color-coded scan.We discover that
LeakyTrack is prone to higher errors in regimes where spectrum is
a slow-varying or irregular function of angle. Further, rotating a
device causes power attenuation due to frequency misalignment,
which ultimately yields negligible spectral information being
received such that spatial inferences cannot be made. Nonetheless,
we show that a surprisingly large range of rotation angles can be
accurately tracked.

(iii) We measure the frequency-selective blockage footprints of
objects at different locations and sizes. Within the field-of-view of
the color-coded scan, we find that LeakyTrack accurately estimates
the object’s geometric properties such as spatial position and size. A
relatively larger object leaves more pronounced spectral footprints
making the detection easier; nonetheless, under full blockage, the
object positioning would be ambiguous.

(iv) We experimentally explore the tradeoff between estimation
accuracy, airtime overhead, and computation complexity and
quantify how improved computational efficiency costs lower
estimation accuracy or higher airtime channel use.

2 RELATEDWORK
Radio frequency (RF) spectrum has been very attractive as a sensing
modality for interactive systems as RF sensors, unlike vision-based
techniques, are unaffected by lighting or atmospheric conditions
and better preserve privacy. RF-based sensing has been explored
extensively in the literature. Unfortunately, achieving high
sensing resolution often demands complex system architectures;
namely, large antenna arrays, coherent wideband transceivers, and
extensive training or calibration.

Multi-Antenna RF Sensing. Multi-antenna radio systems
have been exploited in the literature to sense Received Signal
Strength (RSS) and Angle of Arrival (AOA) to infer the motion of
a radio-equipped node (a.k.a. active sensing) or an object (a.k.a.
passive sensing) [8, 30, 39]. The sensing resolution, however, is
limited by the number of antennas in the systems. Other works
emulate multiple receiving or transmitting antennas by creating
a synthetic aperture based on the movement of the active or
passive target [2]. Even though such solutions eliminate the need
for large arrays, they restrict the type of motion that can be
detected. More recently, mmWave devices allow for miniaturized
phased-array antennas to create highly directional beams. Scanning
the space by steering such directional beams can automatically
correlate the relative positioning of an RF source (transmitter or
an object reflecting RF signals) with RX’s location through the
beam direction in-use [37]. Instead, we propose a single-antenna
architecture that is capable of sensing objects and tracking any
arbitrary motion of a receiver.

Coherent Wideband Solutions. Another body of work
exploits Time of Flight (ToF) measurements or phase variations at
coherent transceivers for RF sensing [1]. It is important to note
that the spatial resolution of such systems is a function of the total
bandwidth of the transmitted waveform and depending on the
utilized bandwidth the ranging accuracy can vary from a couple of
meters to few centimeters. Hence, using mmWave and Terahertz
frequencies, with a large swath of available spectrum, is inherently
more advantageous. Yet, the key challenge is that extracting ToF or
phase information requires tight synchronization between nodes,
which becomes increasingly challenging in higher frequencies.
Furthermore, due to extremely higher attenuation, received signals
can have low SNR, demanding expensive low-noise electronics to
extract phase reliably [34].

Instead, in LeakyTrack, we adopt a noncoherent approach
that relies solely on the relative power over different frequency
sub-channels to infer nodal or environmental motions. This
relaxation simplifies the sensing architecture, eliminates the need
to keep tight synchronization between the transmitter and receiver,
and is robust to small-scale channel variations.

Training Based RF Sensing. Other works adopt training
techniques such that the recognition system uses a classifier that
is trained and tested under a similar environmental conditions
in which it will be deployed. These solutions follow the general
architecture of machine learning-based classification systems that
are tailored for a specific sensing purpose, e.g., human presence
detection [2], fall detection [29, 36], activity recognition [6, 22],
and localization [32, 42]. Depending on the technology in-use
and the training set size, tracking small-scale motions with even
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sub-millimeter accuracy has been demonstrated for gesture
sensing applications [24]. The training phase, however, may be
computationally demanding and time-consuming, especially since
detection accuracy or ability to discriminate fine-grained target
pattern is typically a function of the training set size [10].

Instead, LeakyTrack requires no training and no pre-computation.
In particular, we introduce an explicit model that correlates the
nodal and environmental movements to the received spectral
properties that are independent of the environment. Furthermore,
LeakyTrack not only classifies the type of activity (e.g., type of
motion), but it also estimates the amount of that activity (e.g., the
amount of receiver rotation or changes in an object location).

Visible Light Sensing. A popular non-RF solution is visible
light localization and tracking. Typically, multiple existing
indoor luminaries are used to achieve sub-meter accuracy with
multi-lateration [23, 40]. Other works use non-linear intensity
differences between two sensors to estimate AOA and localize
using fingerprinting with 3+ light sources of known location [43]
or unknown positions [18]. Another related approach is to use
cameras to capture images of distinguishable LED lamps and
localize using image processing techniques [13, 21]. Another
recent trend in light-based systems is to localize digitally to
guarantee high resilience against random noise [25, 38]. Finally,
in LiDAR ranging systems, the target is illuminated with laser
light and differences in laser return times are used for distance
inference. The disadvantages of visible light sensing are rooted
in reflectivity limitations of light pulses causing vulnerability to
ambient light and inability to track passive objects, especially when
combined with nodal motion. Camera-based solutions require
much higher power and computational resources. Further, LiDAR
uses high-power lasers imposing eye-safety concerns.

Leaky Wave Antennas. Having been used in the RF region
since at least the 1940s, LWAs have a long history [7]. LWAs have
been studiedmainly as a potential candidate for THz networks since
they offer a low-profile and flexible solution for the challenging
problem of beam steering in the THz regime [3, 4, 12, 19, 33, 34].
Specifically, LWAs allows for controlling the beam steering
direction by tuning the transmit frequencies [17, 28]. Other
work explored the capacity and limitations of these antennas in
multiplexing [20, 26], terahertz radar [5, 27], link discovery [14, 15],
and physical-layer security [41]. In contrast, in this work, we
present the first-ever use of the LWA as a physical medium for
non-coherent RF sensing.

3 SYSTEM ARCHITECTURE
In this section, we explain the background of leaky-wave antennas
and present our sensing architecture.

3.1 Primer on Leaky-Wave Antennas
A leaky-wave antenna can be realized by two metal plates placed
in parallel with open sides. By cutting a slot in one of the plates, we
allow guided waves to “leak” energy into free-space, or to receive
energy from free-space. We can treat the leaky waveguide slot as a
finite-length aperture, which produces a diffraction pattern in the
far-field. For a diffracting aperture (i.e., slot length) of L and the
dominant TE1 mode, the far-field radiation electric field E can be

f1,f2

∅!∅"

Figure 1: Two waves injected to the leaky-wave antenna
leak at different angles such that high-frequencywave (blue)
emits at lower angle compared to the low-frequency wave
(green), i.e., f1 > f2 results in ϕ1 < ϕ2.

derived as [16, 35]

E(f ,ϕ) ∝ sinc
(
[β(f ) − jα + k0 cosϕ]

L

2

)
, (1)

where sinc(x) = sinx/x , α is a parameter that describes the loss
of energy in the guided mode due to leakage out of the slot, k0 is
the free-space wave vector number (i.e., k0 =

2π f
c in which c is the

speed of light and f represents frequency), and ϕ is the propagation
angle of the free-spacewave relative to thewaveguide’s propagation
axis (so that ϕ = 0 corresponds to the emission in parallel to the
LWA’s plates).

In the above equation, β(f ) is the frequency-dependent
propagation constant of guided waves. For the parallel-plate
waveguide, the dominant transverse electric (TE) mode is TE1
mode, and the propagation constant β of the TE1 mode is

β(f ) = k0

√
1 − (

c

2b f
)2, (2)

where b represents the distance between the two metal plates of
the waveguide.

Frequency-dependent radiation in LWAs. Based on the
radiation pattern described in Eq. (1), the energy emitted
at a particular angle is coupled with the frequency of input
waves. The radiation function E(f ,ϕ) maximizes when
Re

{
(β(f ) − jα − k0cosϕ)

L
2

}
= 0. Because of the frequency

dependence of propagation constant β(f ), this condition results in
a coupling between frequency and emission angle from the slot,
given by

ϕ = sin−1
( c

2b f

)
(3)

Eq. (3) suggests that the larger the input frequency, the lower
the max-power emission angle from the slot. Fig. 1 depicts a LWA
device with two injected frequencies shown in blue (f1) and green
(f2) such that f1 > f2. We observe that the green-colored wave
emits at a larger angle compared to the blue-colored wave.

3.2 Sensing Architecture
We leverage the frequency-dependent radiations in LWAs for
enabling the nodal and environmental sensing functionality. We
equip wireless transmitter and receiver with a single LWA device.
We emphasize that LWA structures can easily meet the power, size,
weight, and cost considerations of future handheld devices since
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Figure 2: LeakyTrack design overview for passive and active sensing.

they are passive, light (< 3 oz), and cheap (< $10). We also envision
the capability of generating and detecting broadband signals (up
to 1 THz) or equivalently the ability to sweep through different
frequencies at wireless nodes.

In transmission mode, the injected signal to the LWA leaks
out and creates directional radiation whose characteristics (i.e.,
main-lobe direction) depends on the frequency of that signal.
In reception mode, the impinging waves are coupled into the
waveguide and then guided toward the broadband receiver located
at the end of the metal plates. The RX signal depends on the TX and
RX movement, as well as the potential object in the environment.
Therefore, we assume a fixed TX and aim to infer changes in
the environment or RX’s geometric properties by exploring the
spectral features of the received signal. To this end, LeakyTrack
relies solely on power measurements across a range of frequencies
and does not require timing or phase information.

Note that emissions from the LWA span in 3D space, as also
shown in Fig. 1, such that a signal emits narrowly in azimuth
(horizontal) but broadly in elevation (vertical). In principle, we can
develop mathematical models that allow nodal and environmental
sensing based on the 3D spatial-spectral codes. Yet, for simplicity,
we focus on 2D sensing, because unless two different receivers are
stacked on top of each other, 2D sensing is sufficient to distinguish
between receivers at different azimuth angles. We leave the 3D
expansion of LeakyTrack for future endeavors.

4 LEAKYTRACK DESIGN
In this section, we describe the design components of LeakyTrack
that leverages the spatial-spectral coupling in LWA radiation
patterns to enable a color-coded scan and infer the spatial locations
of LWA-equipped RXs as well as LWA-free objects.

4.1 Design Overview
LeakyTrack is the first non-coherent single-antenna sensing system
that can sense nodal and environmental motion using a LWA. We
leverage the antenna’s inherent frequency-dependent radiation
to deliberately discriminate the spread of different frequencies in
the angular space so that the spatial information correlates with
the spectral properties of the received signals. We introduce a
color-coded scan to simultaneously cover a wide spatial domain
in a single transmission. LeakyTrack then extracts the geometric
properties of a RX (e.g., location and orientation) and the passive
objects (e.g., location and size) based on their spectral footprints
on the received power spectrum profile. This can potentially

enable many applications including accurate indoor localization
and tracking, object and human presence detection, and efficient
coordination of directional wireless networks via fast mobility
adaptation and blockage recovery.

The fundamental design principles of LeakyTrack are illustrated
in Fig. 2. We inject a time-domain terahertz pulse (equivalently a
broadband signal) into the LWA. Different frequency components
will decouple and emerge at different directions forming a
color-coded scan as shown in Fig. 2. At the RX, a portion of these
EM waves arrive having spectral characteristic that depend on
objects in the wireless medium and the RX’s geometric properties.
The EM waves ultimately impinging on the RX’s LWA couple into
the waveguide through the open slot, travel inside the waveguide,
and are measured at the plate ends.

The LeakyTrack architecture can be used to infer the motion of
both the RX itself as well as the potential environmental object.
Sensing a LWA-equipped device (a.k.a. active sensing), we show
how to model the spectrum as a function of the device’s spatial
location and orientation relative to the TX’s waveguide. The
presence of objects within the field-of-view of our color-coded
scan obstructs the reception of certain EM waves and yields a
frequency-selective blockage. We show how this partial blockage
relates to the object’s geometric properties (e.g., position and size).
Note that we are referring to the objects that are partial obstruction
of a Line-Of-Sight (LOS) path since with a full blockage, no signal
is measured, and consequently, no spatial information is conveyed.
Therefore, LeakyTrack senses a static or moving object (a.k.a.
passive sensing) via measuring its spectral footprints (see Fig. 2).

Finally, LeakyTrack achieves the best of two worlds: the
high-resolution in wide-band RF sensing and low-complexity in
the architecture of non-coherent and single-antenna systems. In
particular, unlike conventional wide-band techniques that require
complex architectures due to the need for tight synchronization,
LeakyTrack simplifies the sensing architecture by relying solely on
the power or RSS measurements. On the other side, LeakyTrack
overcomes the shortcomings of RSS-based single-antenna
schemes by simultaneously transmitting waves with unique
spectral signatures in different directions. Next, we illustrate the
mathematical model that enables the nodal motion sensing and the
object sensing without a training phase.

4.2 Modeling Spatial-Spectral Footprints
We consider a static transmitter that creates frequency-dependent
radiation patterns by passing a THz pulse through a LWA. We first
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isolate and model the received spectrum as a function RX’s angular
position. Then, for a fixed RX placement, we explore the impact
of RX rotation on the spectral profile. Finally, we introduce an
optimization framework that extracts nodal motion by comparing
the modeled spectral profile against the measured spectrum.

4.2.1 Spectral Contribution of RX’s Location. To relate the received
spectral properties to the device’s location, the first step is to
model the frequency-dependent directional radiations in LWAs.
LeakyTrack enables a color-coded scan by injecting a THz pulse
(which contains a wide range of frequencies up to 1 THz) into the
TX’s waveguide. The LWA acts as a directional antenna emitting
waves into the free-space; albeit, with a spatial bias such that the
main lobe direction is a nonlinear function of the frequency. We
denote D(f ,ϕ) as the directivity gain of frequency f defined as
the radiant intensity that a LWA creates in a particular direction ϕ
against the average value over all directions:

D(f ,ϕ) =
|E(f ,ϕ)|

2
π

∫ π
2

0 |E(f ,ϕ)|dϕ
, (4)

where E(f ,ϕ) is the far-field electric field pattern in Eq. (1) and the
denominator represents the average radiated intensity over [0, π2 ].

The emitted signals from the waveguide subsequently traverse
in the wireless medium and impinge on RX’s LWA. Even though
such emissions happen simultaneously in all directions within a
sector of 90◦1, only those signals with sufficient directivity gain
along the RX’s LOS direction can be received.

Hence, we model rim (f ), the impinging power over any given
frequency, as follows:

rim (f ) ∝ Ptx (f )D(f ,ϕD )
( c

4πd f
)2
, (5)

where ϕD represents the LOS angle between the two nodes, Ptx (f )
is the transmit power budget for each frequency, and c is the
free-space speed of light. The term

( c
4πdf

)2 describes the free-space
Friis propagation loss. Fig. 3 demonstrates an example scenario with
frequency-dependent radiation patterns depicted in different colors.
Translation of a mobile device would change the relative TX-RX
angular positioning (i.e., ϕD ); hence, rendering impinging waves
with distinct spectral properties.

Interference of Background Reflection.We consider a LOS
channel model due to the sparse scattering at frequencies above
100 GHz [31]. In particular, the likelihood of multipath interference
is low due to the high reflection attenuation (e.g., every bounce
off of an object costs 10 dB [19]). Nonetheless, it is worth noting
that signals may still suffer from distortion under background
reflection. Such reflections, if they exist, would have different
departure angles compared to the LOS path. Hence, the spectral
content of a non-LOS (NLOS) path would be different from the
LOS’s spectral characteristics provided there is sufficient angular
separation between the two paths. Hence, one can devise strategies
to identify and isolate the LOS spectral band for RF sensing with
LeakyTrack. However, we limit the scope of this paper to LOS
channels and leave the exploration of NLOS scenarios for future
work.
1The angular range can be increased to 360◦ by extending the node architecture, for
instance by employing a multi-face LWA structure. However, exploring such solutions
is beyond the scope of this paper.
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Figure 3: Nodal motion tracking by creating
frequency-dependent radiation patterns and processing the
spectral characteristics of the received waveform.

4.2.2 Spectral Contribution of RX’s Orientation. Finally, the
impinging waves are coupled into the RX LWA and guided toward
the broadband detector. Intuitively, if the RX’s LWA is parallel
to the TX’s LWA, then the air-to-waveguide coupling loss is
negligible, and we expect similar spectral characteristics for
coupled and impinging waves. However, when the incident angle
is different from ϕD , then the coupled waves would experience a
mismatch loss. In principle, the LWA has a reciprocal radiation
pattern; thus, when operated as a receiver, free-space waves with
frequency f would couple best into the waveguide if they arrive at
the slot with the angle given by Eq. (3). The amount of coupling
mismatch loss depends on the discrepancy between the correct
angle (for each frequency f ) and the incident angle.

We denote θrot as the RX’s rotation angle compared to perfect
alignment with the TX’s LWA. In other words, θrot is the difference
between the angle of incidence and departure. We assume a
reciprocal frequency-dependent reception pattern as defined in
Eq. (4). Hence, we can model the composite impact of TX and
RX spatially-biased LWA filters as D(f ,ϕD ) × D(f ,ϕD + θrot ).
Nonetheless, LWAs are passive devices and cannot amplify signals.
Therefore, the power of the coupled waves for any given frequency
cannot be larger than the impinging power. We account for this
physics-driven requirement by bounding the effective directivity
to the original transmit directivity:

Def f (f ,ϕD ,θrot ) = min
(
D(f ,ϕD )D(f ,ϕD + θrot ),D(f ,ϕD )

)
,

(6)
where Def f (f ,ϕD ,θrot ) characterizes the effective end-to-end
directivity gain at any frequency. Note that θrot can be a positive
or negative scalar, depending on the RX’s orientation. If the
incident angle is far from the angle of departure (i.e., large θrot ),
one would expect that the RX receives no signal. However, our
analysis reveals that LeakyTrack can support a fairly large θrot
without complete loss of signal (see Sec. 6).

Rotation Direction. Although all frequency components
would encounter some coupling loss on the waveguide interface,
this attenuation is non-uniform across different sub-channels
and depends on the rotation direction. Fig. 3 shows the power
spectrum of impinging and coupled waves for clockwise (CW) and
counter-clockwise (CCW) rotations.
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Figure 4: Object tracking based on the frequency-selective
distortion imposed by the object’s spatial footprints.

CW rotation of RX’s LWA (negative θrot ) makes the angle of
incidence smaller than the optimum angle. Recall from Sec. 3 that
the angle of emission (here reception) is inversely and non-linearly
proportional to the frequency. Hence, with smaller incident angles,
higher-frequency tones within the spectral band of the impinging
waves are better coupled into the waveguide, whereas lower tones
suffer from increased coupling mismatch loss.

Conversely, with CCW rotation (positive θrot ), the increase
in the angle of incidence yields a relatively better coupling
for low-frequency components while imposing higher loss on
high-frequency components of the impinging waves. Fig. 3
demonstrates an example scenario in which the spectral band of
coupled waves differs from the that of impinging waves depending
on the direction of rotation. In LeakyTrack, we take hints from
these insights to extract the amount and the direction of rotation.

4.2.3 Integrating Nodal Parameters. Since the RX’s spatial location
and orientation both contribute to the spectral properties of the
received waveform, we can write the received power for a given
frequency f, LOS angle ϕD , and rotation angle θrot as follows:

r (f ,ϕD ,θrot ) ∝ Ptx (f )Def f (f ,ϕD ,θrot )
( c

4πd f
)2 (7)

Note that the first-order spectral attributes are embedded in the
effective directivity pattern Def f (f ,ϕD ,θrot ). First, recall that Ptx
is a scalar representing the transmit power. Second, we assume
that the distance d is slowly changing such that the amount of
spectral change induced by Friis path loss is not significant between
two consecutive inferences. Nonetheless, as different frequencies
experience different propagation attenuations, this opens up the
possibility to harness this distance-dependent loss for ranging and
proximity estimation, which is a subject of our future work.

4.2.4 Frequency-Selective Blockage. The emitted EM waves suffer
from penetration loss when encountering an object on their route
toward the receiver. In a color-coded scan, the scattering object is
unlikely to attenuate all frequency components evenly. Instead, the
object induces a partial and frequency-selective distortion according
to its geometric features. Fig. 4 depicts a scattering object located
at angle θb relative to the transmitter. The object’s spatial footprint
imposes a spectral distortion on the waves emerging at directions
of θb ± θw in which θw denotes the half-angle size of the object in
the angular regime.

We model the spectral distortion due to the presence of an object
located at center angle θb (w.r.t the TX) with half-angle size of θw
as follows:

Bndx (f ,θb ,θw ) =

∫ θb+θw
θb−θw

D(f ,ϕ)dϕ∫ π
2

0 D(f ,ϕ)dϕ
, (8)

where Bndx represents blockage index andD(f ,ϕ) is the directivity
gain as defined in Eq. (4). When θw = 0, no object exits between the
TX and RX and the blockage index Bndx = 0. Maximum blockage
occurs when the center of the object is located at ϕf (i.e., the
max-power emission angle). Note that θw is the projected size
of an object from TX’s point of view, such that θw of a big object
that is far from the TX may be similar to the half-angle size of a
smaller object closer to the TX.

4.3 Motion Detection and Tracking
While Eq. (7) models the expected relative power spectrum based on
RX geometric properties, we can also measure the actual received
power spectrum at the RX. We envision a periodic color-coded
scan to track the nodal and environmental motion by measuring
the spectral variations. In practice, power measurements are
available over a discrete set of frequencies depending on the clock
sampling rate. We denote rmsr (f ) as the power measurement for
any frequency f within the available set of frequencies. Therefore,
we estimate the geometric parameters of the RX as well as any
potential objects via the non-linear least squares optimization
framework below that minimizes the distance between measured
data and our model after proper scaling:

ϕ∗D ,θ
∗
rot ,θ

∗
b ,θ

∗
w =

argmin
ϕD,θrot ,θb ,θw

∑
f

|rmsr (f ) − r (f ,ϕD ,θrot )(1 − Bndx (f ,θb ,θw ))|2,

(9)
where ϕ∗D is the LOS departure angle estimate and θ∗rot is
the estimated rotation angle relative to the perfect waveguide
alignment. θ∗b and θ∗w capture the object’s spatial placement
and size. Moreover, the summation is over the discrete range of
frequencies supported by the broadband detector. We emphasize
that no phase information is used in this methodology; thus,
LeakyTrack is a non-coherent scheme. Note that environmental
mobility (i.e., movement of an object) manifests as changes in θ∗b in
consecutive measurements. Similarly, nodal motion can be inferred
from LOS or rotation angle variations.

Tradeoff between Airtime Overhead and Computational
Complexity. Finding a global minimum for the non-linear least
squares problem in Eq. (9) would require a brute-force search over a
discrete set of values for the variables of interest (namely, ϕD , θrot ,
θb , and θw ). The computational complexity of such an exhaustive
search relates to the search space size such that the number of
iterations is on the order of N 4 when each variable tries N values.

Alternatively, we can solve this non-linear least squares problem
via computationally efficient algorithms such as Gauss-Newton
and Davidon-Fletcher-Powell. Nonetheless, these algorithms
are sensitive to the initial parameter estimates since inaccurate
initialization (that is far from the optimum values) can yield
ill-conditioning, divergence, or landing on a local minimum
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Figure 5: The custom LWA used in our measurement setup.

rather than a global minimum. To avoid stale initial estimates, we
need to increase the tracking rate, meaning the number of pulse
transmissions per unit time, rendering higher airtime overhead
and channel use. Therefore, we study the tradeoff between
computational complexity and airtime overhead in Sec. 6.3.

5 EXPERIMENTAL PLATFORM
To evaluate the performance of LeakyTrack, we conduct extensive
over-the-air experiments. The key components of our measurement
setup are the THz pulse emitter, broadband detector, and our
custom-built LWA. For THz pulse generation and detection, we
use the T-Ray 4000 TD-THz system [11]. The interchangeable
fiber-coupled sensor heads deliver a picosecond duration
time-domain THz pulse or equivalently a broadband waveform in
the frequency-domain that ranges up to 1 THz. On the receiver
side, with the sampling rate of 12.8 THz (1 sample every 78
femtoseconds), we can observe frequencies up to 6.4 THz with
a resolution of 3.13 GHz. We build a custom LWA device that
consists of two 4 × 4 cm2 metal plates with a thickness of 1 mm, as
shown in Fig. 5. We put the plates in parallel with 1 mm separation
and create a slot on one plate with 3 cm length and 1 mm width
to allow guided waves to leak into free space. Note that the slot
length should be at least an order of magnitude larger than the
plate separation to allow the energy leak out along the aperture
as waves propagate inside the waveguide. Slot length and plate
separation impact the spatial-spectral properties of the color-coded
scan and such dependencies are captured in Eq. (1)-(3).

Fig. 6 demonstrates our measurement setup for nodal sensing.
Our broadband source generates THz pulses which are focused to
the LWA via a lens with a focal distance of 6 cm. The composing
frequencies then decouple and emit at different directions realizing

TX’s 
LWA

RX’s 
LWA

Broadband source

Broadband detector

Figure 6: Our experimental setup for active sensing.
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Figure 7: Our experimental setup for passive object sensing.

a color-coded scan. The RX’s LWA and the broadband detector
are mounted on a rotating arm that facilitates different LOS and
orientation configurations.

Fig. 7 depicts our experimental setup for passive object detection
and tracking. Reflection and absorption coefficients of an object
vary depending on frequency and the material’s properties. Yet,
exploring the absorption and scattering behavior of different
materials in sub-THz bands is beyond the scope of this paper.
Here, as a proof-of-concept analysis, we use objects made from
aluminum sheets in multiple sizes.

Due to hardware limitations of the low-power THz source, we
are bound to conduct experiments in small scales (up to a meter).
In particular, our THz source emits an average power of roughly
−10 dBm, which is the time-averaged power, integrating over the
entire (1 THz) spectral band. Hence, the power in 1 kHz bandwidth
is −100 dBm. Scaling up the transmitter-receiver distance could be
achieved by increasing the power of the transmitter. For example,
prior work reported a CMOS-based widely tunable source that
achieves about −10 dBm in 1 kHz bandwidth, over the entire range
100 − 300 GHz offering a factor of 109 increase in output power
compared to our THz source [9]. Exploring the details of such
CMOS-based technologies (e.g., power efficiency) is beyond the
scope of this paper. Note that the LWA is itself a passive device and
increasing the transmit power does not affect the spatial-spectral
patterns nor the design of LeakyTrack. Further, time-domain
measurements are translated to power spectrum via a 4096-point
FFT, which are then directly used as input to the LeakyTrack.
Hence, LeakyTrack does not require any pre-processing techniques
and it is not computationally demanding.

6 EVALUATION
In this section, we evaluate the key components of LeakyTrack via
over-the-air experiments.

6.1 Nodal Motion Sensing
We explore the capability of LeakyTrack in nodal motion sensing
for three types of mobility: (i) Translational Mobility: in which
the RX’s position changes while keeping the same orientation; (ii)
Rotational Mobility: in which the RX has a fixed location but varying
orientation; and (iii) Concurrent Translation and Rotation: where
we consider real-world motions with a mixture of both translation
and rotation.

6.1.1 Translational Mobility. We first experimentally investigate
the performance of LeakyTrack in detecting and tracking
translational motion.
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Figure 8: Translational mobility experiment: (a) the schematic of measurement setup, (b) Nodal motion parameters estimated
by LeakyTrack, (c) the angle-frequency coupling in LWAs, theory vs. experiment.

Setup. We study a fixed LWA-equipped TX and a mobile RX.
Fig. 8a depicts our experimental setup in which the TX conducts
a color-coded scan by injecting a pulse into its LWA. The RX
travels along the trajectory A–>B–>C–>D while measuring the
received power spectrum. To isolate the spectral variation due to
translation, we mandate continued alignment between the RX and
TX waveguides (i.e., θrot is zero). We use each measured signal
independently and as stand-alone data to extract nodal motion
parameters. In other words, our inference scheme does not include
the history of previous measurement instances here.

Fig. 8b presents the motion parameter estimates (including LOS
and rotation angles) achieved by LeakyTrack against the ground
truth. We observe that LeakyTrack accurately infers the LOS angle
for a range of angles. In particular, Fig. 8b reveals that the LOS angle
(i.e., ϕD ) estimates deviate from ground truth for angles above 60◦.
Moreover, LeakyTrack mistakenly detects rotation when the RX
approaches point D in the trajectory (equivalently,ϕD getting below
18◦ in the angular domain).

To understand the reasons behind these imperfections, we
measure the spectral characteristics of radiations as a function
of emission angle and compare it with the model from Sec. 3.
Fig. 8c plots the peak frequency of measured power spectrum vs.
receiver’s angle for a range of 10◦ to 80◦ degrees with a resolution
of 1◦. In the same plot, we show the theoretical spectral peak from
Eq. (3). The results show good agreement between the model and
measurement data for angles above 20◦. When ϕD is below 20◦,
the corresponding peak frequencies are above 400 GHz and those
components are fundamentally weaker, due to the spectrum of
the illumination source used in our measurements. Hence, when
exposed to coupling loss, the signal level degrades to the noise level
yielding an increased measurement error. Additionally, Eq. (3) does
not account for non-idealities in the waveguide geometry such as
finite non-zero plate thickness that contributes to a more complex
spectrum. These effects are likely to become more pronounced at
small angles, where the effective propagation length inside the
leaky-wave slot is larger.

Moreover, as shown in Fig. 8c, for angles above 55◦, the peak
frequency is a relatively flat (or slowing varying) function of the
emission angle. This means that radiation at those emission angles
are expected to have similar spectral characteristics making it
difficult for LeakyTrack to extract the correct angle. Besides, the
spectral resolution of any real-world broadband receiver is finite
and bound to its clock sampling rate. The frequency resolution

in our setup is 3.1 GHz; thus, a small spectral shift may cause an
estimation error of several degrees in this regime.

Findings: LeakyTrack can successfully extract the RX’s spatial
position by conducting a color-coded scan and assessing the spectral
profile of received signals. Yet, LeakyTrack is prone to estimation errors
at regimes where spectrum is a slowly varying or irregular function
of emission angle.

6.1.2 Rotational Mobility. Here, we first experimentally explore
how spectral properties vary as a function of RX rotation. Then,
we analyze the capability of LeakyTrack in inferring the amount of
rotation in different settings. To this end, we consider a fixed LOS
configuration with path angle ϕD = 30◦ and rotate the RX’s LWA
such that angle of incident changes in steps of 2◦ in both CW and
CCW directions. At each rotation setting, we collect raw data from
the broadband detector located at one end of the waveguide.

We find that total RX power is maximum when the receiving
waveguide is perfectly aligned with the transmitting waveguide.
Any other orientation configuration imposes a power attenuation
due to the coupling mismatch loss. Interestingly, Fig. 9 reveals that
the attenuation is non-uniform across the spectrum. Specifically,
for any CW rotation, the lower half of the band faces a relatively
higher attenuation compared to higher frequency components.
Since the effective impinging angle decreases (see Fig. 3), the
antenna frequency-dependent directivity shifts toward higher
frequencies, i.e., positively biasing higher tones while weakening
lower ones. As shown in Fig. 9a, the extent of weakening worsens
with larger rotation angles.

Similarly, Fig. 9b demonstrates that CCW rotation introduces
non-uniform frequency-dependent loss by moving the directivity
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Figure 9: The power spectrum of the received signals with
different RX’s rotation configurations.
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Figure 10: LeakyTrack rotation estimation for a range of CW
and CCW rotation angles at fixed LOS angle of 37 degrees.

pattern of the RX’s LWA toward lower frequencies. Nonetheless,
LWA is a passive device and cannot amplify the signal; thus, the
coupled waves’ power at any frequency cannot be more than that
of impinging waves. These measurement insights were the building
block for LeakyTrack’s rotation inference illustrated in Sec. 4.

Next, we analyze the performance of LeakyTrack in estimating
nodal rotation in fixed LOS configurations. We exploit the same
setup, but this time, we locate the RX’s LWA along with the
broadband detector at different angular positions such that ϕD
adopts a discrete choice of angles from 25◦ to 65◦.

Fig. 10 presents the nodal motion estimates against the amount
of true rotation when the geometric angle between the TX and RX
waveguides is 37◦. We observe that LeakyTrack can successfully
track RX rotation for a range of CW and CCW rotations (shown
within dashed lines) while consistently extracting the correct and
fixed LOS angle. Beyond this detection range (which we also call
detection zone), however, the estimates deviate from the ground
truth. Obviously, if the rotation angle is too large, then the received
spectral information becomes close to the noise level, and the
rotation angle cannot be correctly detected. Note that the maximum
measurable rotation is asymmetric with respect to the direction of
rotation. We further characterize the detection zone below.

Finally, Fig. 11 summarizes LeakyTrack’s performance in rotation
tracking. By compiling all measurements at a given rotation angle
(at each ϕD ), we extract the measurement uncertainty in the
rotation angle as a function of the true degree of rotation. The
figure depicts the average extracted rotation angle at many values
of ϕD along with error bars to indicate standard deviation. The
uncertainty increases somewhat for larger rotations since a smaller
signal is measured. Nevertheless, over the range of accessible
rotation angles, the average estimation error is less than 1.5◦.

Findings: We experimentally showed how the spectral
characteristics of impinging waves change with LWA orientation.
LeakyTrack leverages these spectral inferences and accurately
estimates the rotation angle and direction of a LWA-equipped node.

6.1.3 Detection Zone. The results in Fig. 8b and Fig. 10 suggest
that device motion inference is feasible only within certain regimes.
In principle, LeakyTrack can conduct a color-coded scan over a
range of 90◦ as signal leakage falls within a sector of 90◦. However,
as discussed above, these emissions are relatively less well-behaved
close to 0◦. To overcome this physics-driven limitation, we can
extend the sensing architecture. For instance, although we excite
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Figure 11: The overall rotation estimation accuracy of
LeakyTrack.

the transmitter’s LWA in a single-sided configuration, it would be
possible to excite the device from both sides, thus doubling the
accessible angular by producing a symmetric emission pattern at
angles 90◦ < ϕD < 180◦. Further, a more complicated waveguide
slot geometry could be employed to cover a larger range of angles.
Yet, exploring such architectures is beyond the scope of this paper.

The rotation detection zone is somewhat different since rotation,
unlike translation, can cause severe power attenuation. Obviously,
if the rotation angle is too large, then no spectral information is
received, and the rotation angle cannot be detected. Yet, predicting
the maximum sensible value of θrot for any given RX location ϕD
is not straightforward.

Let us denote γth as the power detection threshold that should
be set based on the noise statistics. We can define the spectral edges
of a received signal as follows:

fmin = argmin
f

Def f (ϕD ,θrot , f ) > γth ,

fmax = argmax
f

Def f (ϕD ,θrot , f ) > γth ,
(10)

where fmin and fmax are the minimum and maximum spectral
tone whose power is above γth . Clearly, perfect alignment
(θrot = 0) yields the maximum received spectral band (fmax -
fmin ). However, this band shrinks with device rotation either by
decreasing fmax under CCW rotation or increasing fmin under
CW rotation. If the spectral band of the coupled signal gets to
zero, the received spectral profile would not carry any meaningful
information and thus rotation detection becomes infeasible. Hence,
we define the detection zone as the maximum rotation angle that
provides non-zero spectral band (i.e., fmax > fmin ).

Fig. 12 shows the range of detectable rotations as a function of
RX angular placement. We observe, for a surprisingly large range of
angles which depends on ϕD , rotation can be tracked. The reason
is that the impinging waves contain a wide range of frequencies at
any emission angle. For certain RX locations, the detection zone is
dominated by physical considerations. For instance, for ϕD < 32◦,
the maximum CW rotation is bound to θrot > −ϕD . Beyond this
limit, the effective incident angle becomes negative meaning the
impingingwaveswould hit the opposite plate. Similarly, forϕ > 65◦,
the maximum CCW rotation is limited to θrot < 90 − ϕD . Even
though waves with incident angles higher than 90◦ would still
couple into the waveguide, they propagate on the opposite direction
inside the waveguide; hence, we cannot measure such signals unless
we place a second detector at the opposite end of the waveguide.
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Figure 12: Range of detectable at different RX locations.

Moreover, Fig. 12 reveals that CW rotation offers a relatively
wider detectable range compared to CCW. This can also be observed
in Fig. 10. The reason is lower frequencies are more resilient toward
coupling mismatch loss. In other words, a fixed amount of CCW
rotation renders higher loss on large frequency components (fmax )
compared to the loss on lower frequencies (fmin ) caused by the
same amount of CW rotation.

Findings: As the misalignment between transmitting and receiving
LWAs increases, ultimately, no signal gets coupled in and no spectral
inference can be made. Nonetheless, a large range of rotation angles
can be accurately tracked.

6.1.4 Concurrent Translation and Rotation. In real-world systems,
devices can traverse complex trajectories in which both translation
and rotation are combined. Hence, we aim to characterize the
performance of LeakyTrack in such nodal mobility scenarios.
Due to hardware limitations, realizing continuous motion in our
experiments is not possible. Therefore, we emulate continuous
motion by discretizing the space of movement, and each time
we configure the RX at the pre-selected location and orientation
before collecting the measurement data.

Setup. We consider a pseudo-random trajectory in which ϕD
varies between 25◦ to 65◦ in steps of 5◦ and the rotation angle takes
multiples of 2◦ on both CW and CCW directions (e.g., ±2,±4,±6,
etc.) as long as it falls within the detection zone described in
Sec. 6.1.3. Initially, the RX chooses a random ϕD and rotation angle
from the above sets. Subsequently, at each measurement snapshot,
the RX can jump into a different position and orientation provided
that it stays within the acceptable regions. Note that this trajectory
does not mandate a constant translation/rotation speed as the
amount of movement between consecutive measurements might
vary. We run LeakyTrack on the collected trace to infer the nodal
motion parameters. We emphasize that LeakyTrack’s estimation
at each snapshot is a stand-alone function of the power spectrum
measured at that instance, independent of other previous instances.

Fig. 13 plots the nodal motion parameters and the geometric
true values in an example pseudo-random trajectory. In this
experiment, the angular placement of the RX and its orientation
both contribute to the received spectral profile. Nonetheless, the
parameters estimated by LeakyTrack accurately follow the ground
truth values. Note that the rotation angles are reported with respect
to perfect alignment with the TX’s LWA. Of course, one can easily
find the amount of rotation between subsequent measurements.

Findings:We demonstrate that LeakyTrack can sense complex nodal
mobility patterns that include combined rotation and translation with
high accuracy.
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Figure 13: Concurrent translation and rotation estimation
by LeakyTrack in a pseudo-random trajectory.

6.2 Environmental Sensing
Setup. Fig. 14 shows the schematic of our measurement setup. The
receiver is placed facing the LWA slot at a distance of 25.4 cm
from the LWA and has a lens with a diameter of 4 cm. We move
an aluminum object from right to left with steps of 2 mm such
that the object trajectory is perpendicular to the LWA-RX axis. For
each object placement, we inject a THz pulse to the waveguide and
measure the received spectrum. We can find a geometric Field of
View (FoV) for any given configuration, as shown in the figure. In
principle, an object can only impact the received spectral profile
when located within the FoV. Further, we mark the angle at which
the object first touches the FoV as the right edge (RE) and the angle
at which the object leaves the FoV as the left edge (LE).

6.2.1 Exploring Frequency-Selective Object Footprints. To
experimentally explore an object’s spectral footprints, we deploy
the setup in Fig. 14 and place the RX at the angle of 35◦. Fig. 15a
presents the measured power heatmap over different frequencies
as a function of the object’s location (θb ). For each (f ,θb ) element,
we normalize the corresponding power to the maximum received
power over the entire angular and spectral range. This heatmap
includes the frequency range of 150 GHz to 500 GHz with a
resolution of 3.1 GHz.

The yellow high-power region (power values close to 1)
corresponds to the object placed outside of the FoV; hence,
the spectral distortion is negligible. This region spans over
245 to 285 GHz with maximum power at 265 GHz which also
follows the expected spectral peak from Eq. (3). When the object
angle approaches 35◦ from RE, the power corresponding to the
second-half of the spectrum (265 − 285 GHz) drops faster. This is
because, due to the angle-frequency coupling in LWA, the object
blocks the waves that contain mostly higher tones. As expected,
the overall power loss is maximum when the object is located at

RX

TX

left edge (LE)

right edge (RE)

Center (C)

!"

Field of View (FoV)

Figure 14: The schematic of object sensing experiments.
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Figure 15: Experimental exploration of frequency-selective
spectral variations due to an object in the wireless medium.

the center of the FoV. As θb shifts to larger angles, the power at
high-frequency components recovers relatively faster. Finally, the
object’s spectral footprint gets negligible as it leaves the FoV.

Next, using the same setup, we study the spectral profile of
four regions: outside the FoV, between RE and C, exactly at C, and
between LE and C. Fig. 15b plots the normalized power spectrum
corresponding to these regions. The frequency-dependent power
distortion is again observable here. For such a small object in-use,
one might expect a narrow spectral footprint that involves sudden
power reduction over a small set of frequencies while other
components remain intact. But interestingly, Fig. 15b reveals that
the reduction spreads over a wide range of frequencies, albeit,
non-uniformly. The reason is mainly rooted in the radiation
properties of our color-coded scan in which each frequency
radiates not only at the maximum-power radiation angle, but also
over a range of angles surrounding it. LeakyTrack leverages such
non-uniform spectral footprints for object detection and tracking.

Findings: An object leaves spectral footprints since it obstructs
the reception of EM waves whose emission directions are correlated
with their spectral content. We experimentally characterized how this
partial blockage relates to the object’s position.

6.2.2 Object Tracking with LeakyTrack. For evaluating the sensing
accuracy of LeakyTrack, we consider the same setup as shown
in Fig. 14. We place the RX at 35◦ and move the object on a
rail perpendicular to the LWA-RX line. We define θw as the
angular representation of the object size. Fig. 16a shows the object
parameters estimates (θb and θw ) as a function of the true object
angle. We also mark the RE, C and LE points on the same plot. We
observe that, when the object is inside the FoV, the estimated θb is
in good agreement with the true object angle. However, this does
not hold true for the estimation of θw .
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Figure 16: LeakyTrack object tracking (a) before α
optimization, (b) after α optimization.

The reason behind the imprecise estimation of θw in LeakyTrack
is rooted in Eq. (8). According to this model, θw controls the spectral
width of the object-induced distortion such that larger θw translates
to a wider affected band. Obviously, θw = 0 means no object
was identified. However, there is another parameter embedded
in D(f ,ϕ) that also affects the spectral width. As defined in Eq. (1),
α accounts for the attenuation of the guided waves and determines
the angular spread of each frequency component emerging from
the waveguide: larger α corresponds to a wider spread and vice
versa. In principle, there is no simple analytical model for α ; yet,
for a fixed node architecture (i.e., a given LWA geometry), it is
a deterministic function of frequency that can be measured and
known a priori. Hence, we measure α values and incorporate them
into our model. Fig. 16b confirms the improved performance of
LeakyTrack after optimizing α .

Findings: LeakyTrack exploits the non-linear frequency-selective
blockage induced by an object to accurately estimate its geometric
properties such as spatial position and size.

6.2.3 Object Size. One key factor that determines the extent of
the spectral footprint is the object’s size. To investigate this factor,
we repeat our experiments with three different sized objects as
shown in Fig. 17. Fig. 18 shows the heatmap of the measured power
spectrum as a function of the object’s spatial location for these
three objects.

2 cm 3 cm1 cm

Figure 17: Deploying objects in different sizes into the
experimental setup.
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Figure 18: The power spectrum heatmap vs. object location
for different object sizes.

As expected, a larger object tends to occlude a wider set of
frequencies. Further, we observe that the full blockage (dark blue)
region expands as the object’s size increases. In such scenarios,
LeakyTrack can easily detect the presence of a blocking object; yet,
the position of the object would be ambiguous.

On the other extreme, a very small object yields an insignificant
spectral change that might get dissolved in the irregularities of
the frequency-dependent radiations or the existing channel noise.
Note that the absolute size of the object is irrelevant. Instead, the
spectral footprint is determined by the angular width of the object
which itself depends on the object’s orientation and distance to
the TX. However, the results in Fig. 16 show that LeakyTrack can
successfully extract θw without knowing distance or orientation.

Findings: Larger objects leave more pronounced spectral footprints
that makes detection easier; nonetheless, under full blockage, the object
positioning would be ambiguous.

6.3 Trading Airtime Overhead for
Computational Complexity

So far, we used a brute-force search mechanism in LeakyTrack,
in which the search space increases with the granularity of the
parameters of interest. In this approach, we estimated the nodal or
environmental motion parameters for each measurement instance
without using any information from previous instances. Here,
alternatively, we implement a less computationally demanding
scheme that leverages the past inferences. We envision periodic
THz pulse excitation (everyT seconds) so that the receiver updates
its motion estimates by assessing the received power spectrum
profile. At each measurement instance, we solve the non-linear
least squares problem in Eq. (9) using the Gauss-Newton algorithm
such that the estimates from the previous measurement are
adopted as the initial guess.

We emphasize that inaccurate initialization (that is far from
the optimum values) can yield ill-conditioning, divergence, or
landing into a local minimum rather than a global minimum.
Obviously, a faster tracking rate (i.e., smaller T ) offers a better
initialization status, yet costs higher time overhead and channel
use. In particular, since broadband pulse transmissions occupy the
entire spectral band, data transmissions in the close vicinity of a
sensing node need to be stopped or might otherwise experience
interference. Moreover, the speed of mobility (e.g., translation
or rotation velocity) also affects the staleness of the initial guess:
faster speed causes higher changes in the motion parameters
between two consecutive measurements separated by T . Instead of
evaluating these two factors separately, we consider the amount of
change in the RX’s spatial position during one cycle T .
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Figure 19: Exploring the impact of initialization on (a) The
estimation error and (b) The computational complexity.

We use the same setup as shown in Fig. 8a for translation-only
mobility. Fig. 19a presents LeakyTrack’s estimation error as a
function of the angular distance between the initial guess and the
correct LOS angle at each instance. A larger number on the x-axis
means that either the translation speed is increasing (for the same
T ) or T is growing (for the same mobility speed). In the latter case,
the x-axis is also inversely proportional to the airtime overhead.

We observe an overall trend of higher estimation error (average
and variance) when the initial guess (which is the estimate of
ϕD corresponding to the previous sample) is farther from the
current RX’s angular position. Hence, it is more likely that a local
minimum is achieved instead of the global minimum. Interestingly,
the error is not monotonically increasing, which is due to the
inherent non-linearity of the problem.

Further, we explore the number of iterations as a representation
of computational complexity in Fig. 19b. We observe that an
increasingly inaccurate initialization first yields more iterations.
Yet ultimately, LeakyTrack would not be able to converge to the
global minimum and terminates at a local minimum with fewer
iterations. Hence, the reduction in computational complexity can
sacrifice estimation accuracy when using a stale prior estimation.
In any case, the number of iterations for exhaustive search (not
shown) would be substantially higher.

Findings: We analyzed the tradeoff between estimation accuracy,
airtime overhead, and computational complexity. Increasing the
tracking rate (i.e., the number of pulse transmissions per unit time)
costs higher airtime overhead; yet, it offers better initialization that
can yield estimation accuracy comparable to that of brute-force
search, albeit with significantly less computational complexity.

7 CONCLUSION
We presented LeakyTrack, a novel non-coherent and training-free
system that enables nodal and environmental motion tracking
with a single leaky-wave antenna. LeakyTrack correlates spatial
information with spectral properties by creating unique spectral
codes simultaneously in all directions. We modeled the impact of
the RX’s geometric motion and a potential environmental object on
the spectral profile of the received signals. We implemented the key
components of LeakyTrack and demonstrated accurate estimation
through extensive over-the-air experiments.
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